翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

emission theory : ウィキペディア英語版
emission theory

Emission theory, also called emitter theory or ballistic theory of light, was a competing theory for the special theory of relativity, explaining the results of the Michelson–Morley experiment. Emission theories obey the principle of relativity by having no preferred frame for light transmission, but say that light is emitted at speed "c" relative to its source instead of applying the invariance postulate. Thus, emitter theory combines electrodynamics and mechanics with a simple Newtonian theory. Although there are still proponents of this theory outside the scientific mainstream, this theory is considered to be conclusively discredited by most scientists.
==History==

The name most often associated with emission theory is Isaac Newton. In his ''corpuscular theory'' Newton visualized light "corpuscles" being thrown off from hot bodies at a nominal speed of ''c'' with respect to the emitting object, and obeying the usual laws of Newtonian mechanics, and we then expect light to be moving towards us with a speed that is offset by the speed of the distant emitter (''c'' ± ''v'').
In the 20th century, special relativity was created by Albert Einstein to solve the apparent conflict between electrodynamics and the principle of relativity. The theory's geometrical simplicity was persuasive, and the majority of scientists accepted relativity by 1911. However, a few scientists rejected the second basic postulate of relativity: the constancy of the speed of light in all inertial frames. So different types of emission theories were proposed where the speed of light depends on the velocity of the source, and the Galilean transformation is used instead of the Lorentz transformation. All of them can explain the negative outcome of the Michelson–Morley experiment, since the speed of light is constant with respect to the interferometer in all frames of reference. Some of those theories were:〔
*Light retains throughout its whole path the component of velocity which it obtained from its original moving source, and after reflection light spreads out in spherical form around a center which moves with the same velocity as the original source. (Proposed by Walther Ritz in 1908).〔. See also the (English translation ).〕 This model was considered to be the most complete emission theory. (Actually, Ritz was modeling Maxwell–Lorentz electrodynamics. In a later paper Ritz said that the emission particles ''in his theory'' should suffer interactions with charges along their path and thus waves (produced by them) would not retain their original emission velocities indefinitely.)
*The excited portion of a reflecting mirror acts as a new source of light and the reflected light has the same velocity ''c'' with respect to the mirror as has original light with respect to its source. (Proposed by Richard Chase Tolman in 1910, although he was a supporter of special relativity).
*Light reflected from a mirror acquires a component of velocity equal to the velocity of the mirror image of the original source (Proposed by Oscar M. Stewart in 1911).
*A modification of the Ritz–Tolman theory was introduced by J. G. Fox (1965). He argued that the extinction theorem (i.e., the regeneration of light within the traversed medium) must be considered. In air, the extinction distance would be only 0.2 cm, that is, after traversing this distance the speed of light would be constant with respect to the medium, not to the initial light source. (Fox himself was, however, a supporter of special relativity.)〔
Albert Einstein is supposed to have worked on his own emission theory before abandoning it in favor of his special theory of relativity. Many years later R.S. Shankland reports Einstein as saying that Ritz' theory had been "very bad" in places and that he himself had eventually discarded emission theory because he could think of no form of differential equations that described it, since it leads to the waves of light becoming "all mixed up".

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「emission theory」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.